26 research outputs found

    Remote Sensing Energy Balance Model for the Assessment of Crop Evapotranspiration and Water Status in an Almond Rootstock Collection

    Get PDF
    One of the objectives of many studies conducted by breeding programs is to characterize and select rootstocks well-adapted to drought conditions. In recent years, field high-throughput phenotyping methods have been developed to characterize plant traits and to identify the most water use efficient varieties and rootstocks. However, none of these studies have been able to quantify the behavior of crop evapotranspiration in almond rootstocks under different water regimes. In this study, remote sensing phenotyping methods were used to assess the evapotranspiration of almond cv. “Marinada” grafted onto a rootstock collection. In particular, the two-source energy balance and Shuttleworth and Wallace models were used to, respectively, estimate the actual and potential evapotranspiration of almonds grafted onto 10 rootstock under three different irrigation treatments. For this purpose, three flights were conducted during the 2018 and 2019 growing seasons with an aircraft equipped with a thermal and multispectral camera. Stem water potential (Ψstem) was also measured concomitant to image acquisition. Biophysical traits of the vegetation were firstly assessed through photogrammetry techniques, spectral vegetation indices and the radiative transfer model PROSAIL. The estimates of canopy height, leaf area index and daily fraction of intercepted radiation had root mean square errors of 0.57 m, 0.24 m m–1 and 0.07%, respectively. Findings of this study showed significant differences between rootstocks in all of the evaluated parameters. Cadaman® and Garnem® had the highest canopy vigor traits, evapotranspiration, Ψstem and kernel yield. In contrast, Rootpac® 20 and Rootpac® R had the lowest values of the same parameters, suggesting that this was due to an incompatibility between plum-almond species or to a lower water absorption capability of the rooting system. Among the rootstocks with medium canopy vigor, Adesoto and IRTA 1 had a lower evapotranspiration than Rootpac® 40 and Ishtara®. Water productivity (WP) (kg kernel/mm water evapotranspired) tended to decrease with Ψstem, mainly in 2018. Cadaman® and Garnem® had the highest WP, followed by INRA GF-677, IRTA 1, IRTA 2, and Rootpac® 40. Despite the low Ψstem of Rootpac® R, the WP of this rootstock was also high.info:eu-repo/semantics/publishedVersio

    Physiological and Agronomical Responses of ‘Vairo’ Almond and ‘Big Top’ Nectarine Cultivars Grafted onto Different Prunus Rootstocks and Grown under Semiarid Mediterranean Conditions

    Get PDF
    Two trials were conducted under Mediterranean conditions to monitor several physiological indicators before harvest (leaf chlorophyll concentration, quantum yield of photosystem II electron transport, stem water potential, and stomatal conductance) and some agronomic performance parameters before and at harvest (vigor, fruit growth, fruit size, fruit weight, and yield), of ‘Vairo’ almond and ‘Big Top’ nectarine cultivars grafted onto eight Prunus rootstocks, six of which are common in both cultivars. For both ‘Vairo’ almond and ‘Big Top’ nectarine cultivars, factors including rootstock, date, and the interaction between rootstock and date, from fruit set to harvest were evaluated. Significantly affected were certain physiological and agronomical traits which were evaluated before harvest, with stem water potential being the parameter affected by interaction in both cultivars. In fact, the stem water potential presented low levels in Rootpac-20 and high levels in Rootpac-40 for both cultivars. With regard to the other physiological traits evaluated during the growing period, changes in stomatal conductance were observed in ‘Vairo’, but not in ‘Big Top’. Comparing rootstocks throughout the season, Rootpac-40 and IRTA-1 exhibited the highest stomatal conductance values, whereas the lowest was observed in Rootpac-R; Rootpac-20 and Ishtara also presented low values. Regarding agronomical traits at harvest, GF-677 and IRTA-1 produced high yields for ‘Vairo’ almond cultivar, whereas Rootpac-40 and Ishtara performed better with ‘Big Top’ nectarine cultivar.info:eu-repo/semantics/publishedVersio

    Almond Fruit Drop Patterns under Mediterranean Conditions

    Get PDF
    Almond is an important tree nut crop worldwide, and planted areas have been increasing year after year. While self-fertility is one of the key factors when it comes to improved almond productivity of new cultivars, yield is also affected by the number of flowers produced, pollination, fruit set, fruit drop, and fruit weight. Almond fruit drop patterns of 20 Mediterranean almond cultivars were studied over three years. In addition, fruit drop patterns of two scion cultivars ‘Marinada’ and ‘Vairo’ budded onto eight to 10 different rootstocks managed with three different pruning strategies were studied for two years. Cumulative flower and fruit drop ranged from 50% to 90% among cultivars and treatments, and there were up to four fruit drop events during the growing season, the main one occurring from 20–60 days from full bloom (DFFB). Subsequent drops were at 100 DFFB, 120–140 DFFB, and the last one at 160–180 DFFB. The later drops were less apparent. In general, about half of the cumulative drop was comprised of buds and flowers, and the remaining percentage was fruit that dropped 20 or more days after full bloom. Furthermore, different fruit drop patterns were observed depending on the cultivar. For late- and extra-late flowering cultivars, cumulative fruit drop began to decrease earlier, with most of the drops occurred already at full bloom, whereas the opposite was observed for the early flowering cultivars. Rootstocks also had an important effect on the fruit drop pattern, with different effects depending on the scion cultivar. Tree management, such as type of pruning, also had an important effect on the rate of fruit drop and cumulative drop. Therefore, each combination of cultivar × rootstock × pruning type will require different strategies in order to reduce the fruit drop and optimize crop loads.info:eu-repo/semantics/publishedVersio

    Esterase, Glutathione S-Transferase and NADPH-Cytochrome P450 Reductase Activity Evaluation in Cacopsylla pyri L. (Hemiptera: Psyllidae) Individual Adults

    Get PDF
    Cacopsylla pyri (L.) (Hemiptera: Psyllidae) is a key pest of pear orchards in Spain. The large number of insecticide treatments necessary for control may be an important contributor to the emergence of resistance. Laboratory toxicity and biochemical assays are necessary to validate the existence of insecticide resistance and establish the underlying mechanisms. All the methodologies developed to evaluate enzyme activity in C. pyri to date have incorporated 'pools' of adults to detect minimum activity ranges. In this study, we determined the optimal working conditions for evaluation of the activities of esterase, glutathione S-transferase and NADPH-cytochrome P450 reductase in individual insects via colorimetric methods using a microplate reader. The main factors affecting enzymatic analysis activity, such as enzyme source and substrate concentration, filter wavelength, buffer pH, reaction time and additives, were evaluated for optimization. Determining the frequency of resistant individuals within a population could be used as an indicator for the evolution of insecticide resistance over time. Two laboratory strains, one of them selected with cypermethrin, and two field populations were analyzed for this purpose. The data obtained revealed high values and great variation in the activity ranges of esterase (EST) in the insecticide-selected population as well as in the field populations validating the applied methodology.This research was supported by a grant for research projects AGL2001-1201 and AGL2004-05182, a pre-doctoral fellowship and project AGL2016-77373-C2-2-R from the Ministerio de Ciencia e Innovación from Spain

    Susceptibility of Almond (Prunus dulcis) Cultivars to Twig Canker and Shoot Blight Caused by Diaporthe amygdali

    Get PDF
    Twenty-five almond cultivars were assessed for susceptibility to Diaporthe amygdali, causal agent of twig canker and shoot blight disease. In laboratory experiments, growing twigs were inoculated with four D. amygdali isolates. Moreover, growing shoots of almond cultivars grafted onto INRA ‘GF-677’ rootstock were used in 4-year field inoculations with one D. amygdali isolate. In both types of experiments, inoculum consisted of agar plugs with mycelium, which were inserted underneath the bark, and the lesion lengths caused by the fungus were measured. Necrotic lesions were observed in the inoculated almond cultivars in both laboratory and field tests, confirming the susceptibility of all evaluated cultivars to all inoculated isolates of D. amygdali. Cultivars were grouped as susceptible or very susceptible according to a cluster analysis. The relationship between some agronomic traits and cultivar susceptibility was also investigated. Blooming and ripening times were found to be relevant variables explaining cultivar performance related to D. amygdali susceptibility. Late and very late blooming and early and medium ripening cultivars were highly susceptible to D. amygdali. Our results may provide valuable information that could assist in ongoing breeding programs of this crop and in the selection of cultivars for new almond plantations.info:eu-repo/semantics/acceptedVersio

    Evaluation of Fungicides and Application Strategies for the Management of the Red Leaf Blotch Disease of Almond

    Get PDF
    Red leaf blotch (RLB) of almond, caused by Polystigma amygdalinum, is an important foliar disease of this nut tree in the Mediterranean basin and especially in Spain. In recent years, the control of this disease has become a key factor in the management of Spanish almond orchards. The management of RLB is not easy due to intrinsic factors of the disease (e.g., long infection and latency periods) and the low number of registered fungicides in this country. From 2015 to 2019, different field trials were conducted in the Lleida region, NE Spain, to evaluate the efficacy of several fungicide products and of application strategies to control this disease. Systemic fungicides, which included fluopyram, trifloxystrobin, and mixtures of fluopyram + trifloxystrobin and pyraclostrobin + boscalid, performed better than contact and penetrant products and showed up to 90% control against RLB. However, the efficacy of the tested fungicides varied depending on the year. In terms of application strategies, when fungicide applications were conducted following specific meteorological conditions (after 15 days from >15 mm rainfalls with ≈10–15 ◦C as the minimum average temperature), their efficacy was comparable to that of calendar-based treatments (every 14, 21, or 31 days from petal fall) but with fewer applications (depending on the year, 2–4 applications as compared with 5–9 for calendar treatments)info:eu-repo/semantics/publishedVersio

    Survey of Oomycetes Associated with Root and Crown Rot of Almond in Spain and Pathogenicity of Phytophthora niederhauserii and Phytopythium vexans to `Garnem¿ Rootstock

    Get PDF
    [EN] From 2018 to 2020, surveys of oomycetes associated with root and crown rot of almond (Prunus dulcis) were conducted on diseased young almond trees in commercial orchards and nurseries in six provinces of Spain. A total of 104 oomycete isolates were obtained from plant and soil samples, which h were identified by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA. Diverse species belonging to the genera Globisporangium, Phytophthora, Phytopythium and Pythium were found, Phytopythium vexans and Phytophthora niederhauserii being the most frequent. The pathogenicity of these two species to one-year-old almond seedlings of 'Garnem' (P. dulcis x P. persica) rootstock was studied. All seedlings inoculated with Pp. vexans and Ph. niederhauserii isolates showed severe symptoms at the late stage of the pathogenicity test (defoliation, wilting and dieback) and several plants died. Some isolates of Ph. niederhauserii significantly reduced the dry weight of the roots compared with the control, but this effect was not observed in seedlings inoculated with Pp. vexans. These results provide new information about the oomycete species present in almond crops in Spain and highlight the importance of carrying out frequent phytosanitary surveys for a better knowledge of potential risks posed by these soil-borne pathogens.This research study was funded by INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria), Spain, through projects RTA2017-00009-C04-01 and RTA2017-00009-C04-04, and matching funds from the ERDF (European Regional Development Fund) and Grant PID2020-114648RR-C33 funded by MCIN/AEI/10.13039/501100011033. Francisco Beluzán was supported by Agencia Nacional de Investigación y Desarrollo/Subdirección de Capital Humano/Doctorado Becas Chile en el Extranjero/72200145. Xavier Miarnau was supported by the CERCA Program, Generalitat de Catalunya.Beluzán Flores, FJ.; Miarnau, X.; Torguet, L.; Armengol Fortí, J.; Abad Campos, P. (2022). Survey of Oomycetes Associated with Root and Crown Rot of Almond in Spain and Pathogenicity of Phytophthora niederhauserii and Phytopythium vexans to `Garnem¿ Rootstock. Agriculture. 12(2):1-15. https://doi.org/10.3390/agriculture12020294S11512

    Airborne inoculum dynamics of Polystigma amygdalinum and progression of almond red leaf blotch disease in Catalonia, NE Spain

    Get PDF
    The dynamics of airborne ascospores and disease progress of red leaf blotch (RLB) of almond, caused by Polystigma amygdalinum, and their correlations with weather variables were studied from 2019 to 2021 in two almond orchards located in Lleida, NE Spain. Airborne ascospores were detected and quantified by real-time qPCR using species-specific primers for P. amygdalinum. Ascospores were detected mainly from April to June, with a high variability between the yearly cumulative concentrations. Positive significant correlations were found between the weekly proportion of airborne ascospores and the number of wet and mild days—either combined or separated— accumulated rainfall, number of rainy days, accumulated low temperatures on wet days, and mean and maximum relative humidity. In contrast, several thermal variables (maximum temperature, VPD, and number of warm days) were negatively correlated with ascospore catches. Positive significant correlations were found between the cumulative proportion of ascospores and RLB incidence and severity. Weekly variations in RLB incidence and severity showed significant positive correlations with the number of warm days while negative with the number of mild days. Severity was also positively correlated with several thermal variables (mean, maximum, and minimum temperature, and VPD), and negatively correlated with the number of cold days and wet and mild days. Stronger correlations were generally found with ascospore catches or disease progress when using concurrent weekly weather data. Gompertz, monomolecular, and logistic growth models were evaluated to describe RLB disease progressinfo:eu-repo/semantics/publishedVersio

    Evaluation of transpiration in different almond production systems with two-source energy balance models from UAV thermal and multispectral imagery

    Get PDF
    A growing number of intensive irrigated production systems of the almond crop have been established in recent years. However, there is little information regarding the crop water requirements. Remote sensing-based models such as the two-source energy balance (TSEB) have proven to be reliable ways to accurately estimate actual crop evapotranspiration. However, few efforts have been made to validate the transpiration with sap flow measurements in woody row crops with different production systems and water status. In this study, the TSEB Priestley-Taylor (TSEB-PT) and contextual approach (TSEB-2T) models were assessed to estimate canopy transpiration. In addition, the effect of applying a basic clumping index for heterogeneous randomly placed clumped canopies and a rectangular hedgerow clumping index on the TSEB transpiration estimation was assessed. The TSEB inputs were obtained from high resolution multispectral and thermal imagery using an unmanned aerial vehicle. The leaf area index (LAI), stem water potential (Ψstem) and fractional intercepted photosynthetically active radiation (fIPAR) were also measured. Significant differences were observed in transpiration between production systems and irrigation treatments. The combined use of the TSEB-2T with the C&N-R transmittance model gave the best transpiration estimations for all production systems and irrigation treatments. The use of in situ PAR transmittance in the TSEB-2T model significantly improved the root mean squared error. Thus, the better agreement observed with the TSEB when using the C&N-R model and in situ PAR transmittance highlights the importance of improving radiative transfer models for shortwave canopy transmittance, especially in woody row crops.This research was supported by the PRIMA ALTOS project (No. PCI2019-103649) funded by the Ministry of Science, Innovation and Universities of the Spanish government and by the internal IRTA's scholarship. The authors would also like to thank all the Efficient Use of Water in Agriculture program team, at the IRTA, for their technical support, as well as the Horizon 2020 Research and Innovation Program (H2020) of the European Commission, in the context of the Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE) action and ACCWA project: grant agreement No.: 823965. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.info:eu-repo/semantics/publishedVersio

    Blooming under Mediterranean Climate: Estimating Cultivar-Specific Chill and Heat Requirements of Almond and Apple Trees Using a Statistical Approach

    Get PDF
    Climate change, and specifically global temperature increase, is expected to alter plant phenology. Temperate deciduous fruit trees have cultivar-specific chill and heat requirements to break dormancy and bloom. In this study, we aimed to estimate chill and heat requirements (in chill portions, CP, and growing degree hours, GDH, respectively) of 25 almond (30–36 years) and 12 apple (14–26 years) cultivars grown under a Mediterranean climate. The set included early and late blooming genotypes. Long-term phenological and temperature records were analyzed by means of partial least squares (PLS) regression. The main difference between early and late genotypes was chill requirement, ranging from 8.40 CP of early genotypes to 55.41 CP of extra-late genotypes. However, as chill requirements are quite easily attained by all almond cultivars in this study, year-to-year variations in actual blooming dates for each genotype are governed by variability of mean forcing temperatures. In contrast, different chill and heat combinations resulted in similar mean blooming dates for the studied apple cultivars. Mean temperature in both chilling and forcing phases determined their blooming time in the location studied. Overlaps and gaps between both phases were obtained. Despite some limitations, the PLS analysis has proven to be a useful tool to define both chilling and forcing phases. Nevertheless, since the delineation of these phases determine the total amount of CP and GDH, further efforts are needed to investigate the transition of these phases.info:eu-repo/semantics/publishedVersio
    corecore